
The 30 Year Horizon

Manuel Bronstein William Burge T imothy Daly
James Davenport Michael Dewar Martin Dunstan
Albrecht Fortenbacher Patrizia Gianni Johannes Grabmeier
Jocelyn Guidry Richard Jenks Larry Lambe
Michael Monagan Scott Morrison William Sit
Jonathan Steinbach Robert Sutor Barry Trager
Stephen Watt Jim Wen Clifton Williamson

Volume 13: Proving Axiom Correct

i

Portions Copyright (c) 2005 Timothy Daly

The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry

Portions Copyright (c) 2004 Martin Dunstan

Portions Copyright (c) 2007 Alfredo Portes

Portions Copyright (c) 2007 Arthur Ralfs

Portions Copyright (c) 2005 Timothy Daly

Portions Copyright (c) 1991-2002,

The Numerical ALgorithms Group Ltd.

All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or

without modification, are permitted provided that the following

conditions are

met:

- Redistributions of source code must retain the above

copyright notice, this list of conditions and the

following disclaimer.

- Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other

materials provided with the distribution.

- Neither the name of The Numerical ALgorithms Group Ltd.

nor the names of its contributors may be used to endorse

or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

ii

Inclusion of names in the list of credits is based on historical information and is as accurate
as possible. Inclusion of names does not in any way imply an endorsement but represents
historical influence on Axiom development.

Michael Albaugh Cyril Alberga Roy Adler
Christian Aistleitner Richard Anderson George Andrews
S.J. Atkins Henry Baker Martin Baker
Stephen Balzac Yurij Baransky David R. Barton
Thomas Baruchel Gerald Baumgartner Gilbert Baumslag
Michael Becker Nelson H. F. Beebe Jay Belanger
David Bindel Fred Blair Vladimir Bondarenko
Mark Botch Raoul Bourquin Alexandre Bouyer
Karen Braman Peter A. Broadbery Martin Brock
Manuel Bronstein Stephen Buchwald Florian Bundschuh
Luanne Burns William Burge Ralph Byers
Quentin Carpent Robert Caviness Bruce Char
Ondrej Certik Tzu-Yi Chen Cheekai Chin
David V. Chudnovsky Gregory V. Chudnovsky Mark Clements
James Cloos Jia Zhao Cong Josh Cohen
Christophe Conil Don Coppersmith George Corliss
Robert Corless Gary Cornell Meino Cramer
Jeremy Du Croz David Cyganski Nathaniel Daly
Timothy Daly Sr. Timothy Daly Jr. James H. Davenport
David Day James Demmel Didier Deshommes
Michael Dewar Jack Dongarra Jean Della Dora
Gabriel Dos Reis Claire DiCrescendo Sam Dooley
Lionel Ducos Iain Duff Lee Duhem
Martin Dunstan Brian Dupee Dominique Duval
Robert Edwards Heow Eide-Goodman Lars Erickson
Richard Fateman Bertfried Fauser Stuart Feldman
John Fletcher Brian Ford Albrecht Fortenbacher
George Frances Constantine Frangos Timothy Freeman
Korrinn Fu Marc Gaetano Rudiger Gebauer
Van de Geijn Kathy Gerber Patricia Gianni
Gustavo Goertkin Samantha Goldrich Holger Gollan
Teresa Gomez-Diaz Laureano Gonzalez-Vega Stephen Gortler
Johannes Grabmeier Matt Grayson Klaus Ebbe Grue
James Griesmer Vladimir Grinberg Oswald Gschnitzer
Ming Gu Jocelyn Guidry Gaetan Hache
Steve Hague Satoshi Hamaguchi Sven Hammarling
Mike Hansen Richard Hanson Richard Harke
Bill Hart Vilya Harvey Martin Hassner
Arthur S. Hathaway Dan Hatton Waldek Hebisch
Karl Hegbloom Ralf Hemmecke Henderson
Antoine Hersen Roger House Gernot Hueber
Pietro Iglio Alejandro Jakubi Richard Jenks
William Kahan Kyriakos Kalorkoti Kai Kaminski

iii

Grant Keady Wilfrid Kendall Tony Kennedy
Ted Kosan Paul Kosinski Klaus Kusche
Bernhard Kutzler Tim Lahey Larry Lambe
Kaj Laurson George L. Legendre Franz Lehner
Frederic Lehobey Michel Levaud Howard Levy
Ren-Cang Li Rudiger Loos Michael Lucks
Richard Luczak Camm Maguire Francois Maltey
Alasdair McAndrew Bob McElrath Michael McGettrick
Edi Meier Ian Meikle David Mentre
Victor S. Miller Gerard Milmeister Mohammed Mobarak
H. Michael Moeller Michael Monagan Marc Moreno-Maza
Scott Morrison Joel Moses Mark Murray
William Naylor Patrice Naudin C. Andrew Neff
John Nelder Godfrey Nolan Arthur Norman
Jinzhong Niu Michael O’Connor Summat Oemrawsingh
Kostas Oikonomou Humberto Ortiz-Zuazaga Julian A. Padget
Bill Page David Parnas Susan Pelzel
Michel Petitot Didier Pinchon Ayal Pinkus
Frederick H. Pitts Jose Alfredo Portes Gregorio Quintana-Orti
Claude Quitte Arthur C. Ralfs Norman Ramsey
Anatoly Raportirenko Albert D. Rich Michael Richardson
Guilherme Reis Huan Ren Renaud Rioboo
Jean Rivlin Nicolas Robidoux Simon Robinson
Raymond Rogers Michael Rothstein Martin Rubey
Philip Santas Alfred Scheerhorn William Schelter
Gerhard Schneider Martin Schoenert Marshall Schor
Frithjof Schulze Fritz Schwarz Steven Segletes
V. Sima Nick Simicich William Sit
Elena Smirnova Jonathan Steinbach Fabio Stumbo
Christine Sundaresan Robert Sutor Moss E. Sweedler
Eugene Surowitz Max Tegmark T. Doug Telford
James Thatcher Balbir Thomas Mike Thomas
Dylan Thurston Steve Toleque Barry Trager
Themos T. Tsikas Gregory Vanuxem Bernhard Wall
Stephen Watt Jaap Weel Juergen Weiss
M. Weller Mark Wegman James Wen
Thorsten Werther Michael Wester R. Clint Whaley
James T. Wheeler John M. Wiley Berhard Will
Clifton J. Williamson Stephen Wilson Shmuel Winograd
Robert Wisbauer Sandra Wityak Waldemar Wiwianka
Knut Wolf Yanyang Xiao Liu Xiaojun
Clifford Yapp David Yun Vadim Zhytnikov
Richard Zippel Evelyn Zoernack Bruno Zuercher
Dan Zwillinger

iv

Contents

1 Here is a problem 3
1.1 Approaches . 4

2 Theory 7

3 Software Details 9
3.1 Installed Software . 9

4 Bibliography 11

5 Index 17

v

vi CONTENTS

New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))

CONTENTS 1

Ultimately we would like Axiom to be able to prove that an algorithm generates correct
results. There are many steps between here and that goal, including proving one Axiom
algorithm correct through all of the levels from Spad code, to the Lisp code, to the C code,
to the machine code; a daunting task of its own.

The proof of a single Axiom algorithm is done with an eye toward automating the process.
Automated machine proofs are not possible in general but will certainly exist for known
algorithms. Bressoud said:

Writing is nature’s way of letting you know how sloppy your thinking
is – Guindon[Lamp02]

Mathematics is nature’s way of letting you know how sloppy your
writing is. – Leslie Lamport[Lamp02]

The existence of the computer is giving impetus to the discovery of
algorithms that generate proofs. I can still hear the echos of the col-
lective sigh of relief that greeted the announcement in 1970 that there
is no general algorithm to test for integer solutions to polynomial Dio-
phantine equations; Hilbert’s tenth problem has no solution. Yet,
as I look at my own field, I see that creating algorithms that gener-
ate proofs constitutes some of the most important mathematics being
done. The all-purpose proof machine may be dead, but tightly tar-
geted machines are thriving. – Dave Bressoud [Bres93]

In contrast to humans, computers are good at performing formal pro-
cesses. There are people working hard on the project of actually for-
malizing parts of mathematics by computer, with actual formally cor-
rect formal deductions. I think this is a very big but very worthwhile
project, and I am confident that we will learn a lot from it. The
process will help simplify and clarify mathematics. In not too many
years, I expect that we will have interactive computer programs that
can help people compile significant chunks of formally complete and
correct mathematics (based on a few perhaps shaky but at least ex-
plicit assumptions) and that they will become part of the standard
mathematicians’s working environment. – William P. Thurston [Thur94]

Our basic premise is that the ability to construct and modify programs
will not improve without a new and comprehensive look at the entire
programming process. Past theoretical research, say, in the logic of
programs, has tended to focus on methods for reasoning about indi-
vidual programs; little has been done, it seems to us, to develop a
sound understanding of the process of programming – the process by
which programs evolve in concept and in practice. At present, we lack
the means to describe the techniques of program construction and im-
provement in ways that properly link verification, documentation and
adaptability.

2 CONTENTS

– Scherlis and Scott (1983) in [Maso86]

Chapter 1

Here is a problem

The goal is to prove that Axiom’s implementation of the Euclidean GCD algorithm is correct.

From category EuclideanDomain (EUCDOM) we find the implementation of the Euclidean
GCD algorithm:

gcd(x,y) == --Euclidean Algorithm

x:=unitCanonical x

y:=unitCanonical y

while not zero? y repeat

(x,y):= (y,x rem y)

y:=unitCanonical y -- this doesn’t affect the

-- correctness of Euclid’s algorithm,

-- but

-- a) may improve performance

-- b) ensures gcd(x,y)=gcd(y,x)

-- if canonicalUnitNormal

x

The unitCanonical function comes from the category IntegralDomain (INTDOM) where we
find:

unitNormal: % -> Record(unit:%,canonical:%,associate:%)

++ unitNormal(x) tries to choose a canonical element

++ from the associate class of x.

++ The attribute canonicalUnitNormal, if asserted, means that

++ the "canonical" element is the same across all associates of x

++ if \spad{unitNormal(x) = [u,c,a]} then

++ \spad{u*c = x}, \spad{a*u = 1}.

unitCanonical: % -> %

++ \spad{unitCanonical(x)} returns \spad{unitNormal(x).canonical}.

implemented as

3

4 CHAPTER 1. HERE IS A PROBLEM

UCA ==> Record(unit:%,canonical:%,associate:%)

if not (% has Field) then

unitNormal(x) == [1$%,x,1$%]$UCA -- the non-canonical definition

unitCanonical(x) == unitNormal(x).canonical -- always true

recip(x) == if zero? x then "failed" else _exquo(1$%,x)

unit?(x) == (recip x case "failed" => false; true)

if % has canonicalUnitNormal then

associates?(x,y) ==

(unitNormal x).canonical = (unitNormal y).canonical

else

associates?(x,y) ==

zero? x => zero? y

zero? y => false

x exquo y case "failed" => false

y exquo x case "failed" => false

true

1.1 Approaches

There are several systems that could be applied to approach the proof.

The plan is to initially look at Coq and ACL2. Coq seems to be applicable at the Spad level.
ACL2 seems to be applicable at the Lisp level. Both levels are necessary for a proper proof.

Coq is very close to Spad in spirit so we can use it for the high-level proofs.

ACL2 is a Lisp-level proof technology which can be used to prove the Spad-to-Lisp level.

There is an LLVM to ACL2 translator which can be used to move from the GCL Lisp level
to the hardware since GCL compiles to C. In particular, the ”Vellvm: Verifying the LLVM”
[Zdan14] project is important.

Quoting from Hardin [Hard14]

LLVM is a register-based intermediate in Static Single Assignment (SSA) form.
As such, LLVM supports any number of registers, each of which is only assigned
once, statically (dynamically, of course, a given register can be assigned any
number of times). Appel has observed that “SSA form is a kind of functional
programming”; this observation, in turn, inspired us to build a translator from
LLVM to the applicative subset of Common Lisp accepted by the ACL2 theo-
rem prover. Our translator produces an executable ACL2 specification that is
able to efficiently support validation via testing, as the generated ACL2 code
features tail recursion, as well as in-place updates via ACL2’s single-threaded
object (stobj) mechanism. In order to ease the process of proving properties
about these translated functions, we have also developed a technique for reason-
ing about tail-recursive ACL2 functions that execute in-place, utilizing a formally
proven “bridge” to primitive-recursive versions of those functions operating on
lists.

1.1. APPROACHES 5

Hardin [Hard13] describes the toolchain thus:

Our translation toolchain architecture is shown in Figure 1. The left side of tthe
figure depicts a typical compiler frontend producing LLVM intermediate code.
LLVM output can be produced either as a binary “bitcode” (.bc) file, or as text
(.ll file). We chose to parse the text form, producing an abstract syntax tree
(AST) representation of the LLVM program. Our translator then converts the
AST to ACL2 source. The ACL2 source file can then be admitted into an ACL2
session, along with conjectures that one wishes to prove about the code, which
ACL2 processes mostly automatically. In addition to proving theorems about
the translated LLVM code, ACL2 can also be used to execute test vectors at
reasonable speed.

Note that you can see the intermediate form from clang with

clang -O4 -S -emit-llvm foo.c

Both Coq and the Hardin translator use OCAML [OCAM14] so we will have to learn that
language.

6 CHAPTER 1. HERE IS A PROBLEM

Chapter 2

Theory

The proof of the Euclidean algorithm has been known since Euclid. We need to study an
existing proof and use it to guide our use of Coq along the same lines, if possible. Some of
the “obvious” natural language statements may require Coq lemmas.

From WikiProof [Wiki14a] we quote:

Let
a, b ∈ Z

and a ̸= 0orb ̸= 0.

The steps of the algorithm are:

1. Start with (a, b) such that |a| ≥ |b|. If b = 0 then the task is complete and the GCD is
a.

2. if b ̸= 0 then you take the remainder r of a/b.

3. set a← b, b← r (and thus |a| ≥ |b| again).

4. repeat these steps until b = 0

Thus the GCD of a and b is the value of the variable a at the end of the algorithm.

The proof is:

Suppose
a, b ∈ Z

and aorb ̸= 0.

From the division theorem, a = qb+ r where 0 ≤ r ≤ |b|
From GCD with Remainder, the GCD of a and b is also the GCD of b and r.

Therefore we may search instead for the gcd(b, r).

7

8 CHAPTER 2. THEORY

Since |r| ≥ |b| and
b ∈ Z

, we will reach r = 0 after finitely many steps.

At this point, gcd(r, 0) = r from GCD with Zero.

We quote the Division Theorem proof [Wiki14b]:

For every pair of integers a, b where b ̸= 0, there exist unique integers q, r such that a = qb+r
and 0 ≤ r ≤ |b|.

Chapter 3

Software Details

3.1 Installed Software

Install CLANG, LLVM

http://llvm.org/releases/download.html

Install OCAML

sudo apt-get install ocaml

An OCAML version of gcd would be written

let rec gcd a b = if b = 0 then a else gcd b (a mod b)

val gcd : int -> int -> int = <fun>

Leslie Lamport[Lamp14] on 21st Century Proofs.

A method of writing proofs is described that makes it harder to prove things that are not
true. The method, based on hierarchical structuring, is simple and practical. The author’s
twenty years of experience writing such proofs is discussed.

Lamport points out that proofs need rigor and precision. Structure and Naming are impor-
tant. Every step of the proof names the facts it uses.

Temporal Logic of Actions (TLA)

Sloppiness is easier than precision and rigor – Leslie Lamport[Lamp14a]

Computerising Mathematical Text[Kama15] explores various ways of capturing mathemati-
cal reasoning.

Chlipala[Chli15] gives a pragmatic approach to COQ.

9

10 CHAPTER 3. SOFTWARE DETAILS

Medina-Bulo et al.[Bulo04] gives a formal verification of Buchberger’s algorithm using ACL2
and Common Lisp.

Théry[Ther01] used COQ to check an implementation of Buchberger’s algorithm.

Pierce[Pier15] has a Software Foundations course in COQ with downloaded files in Pier15.tgz.

Chapter 4

Bibliography

11

12 CHAPTER 4. BIBLIOGRAPHY

Bibliography

[Bres93] David Bressoud. Review of the problems of mathematics. Math. Intell.,
15(4):71–73, 1993.

[Bulo04] I. Medina-Bulo, F. Palomo-Lozano, J.A. Alonso-Jiménez, and J.L. Ruiz-
Reina. Verified computer algebra in acl2. ASIC 2004, LNAI 3249, pages
171–184, 2004.

Abstract: In this paper, we present the formal verification of
a Common Lisp implementation of Buchberger’s algorithm for
computing Groebner bases of polynomial ideals. This work is car-
ried out in the ACL2 system and shows how verified Computer
Algebra can be achieved in an executable logic.

[Chli15] Adam Chlipala. Certified Programming with Dependent Types. MIT Press,
2015.

[Hard13] David S. Hardin, Jedidiah R. McClurg, and Jennifer A. Davis. Creating
formally verified components for layered assurance with an llvm to acl2
translator.

Abstract: This paper describes an effort to create a library of
formally verified software component models from code that have
been compiled using the Low-Level Virtual Machine (LLVM) in-
termediate form. The idea is to build a translator from LLVM to
the applicative subset of Common Lisp accepted by the ACL2
theorem prover. They perform verification of the component
model using ACL2’s automated reasoning capabilities.

[Hard14] David S. Hardin, Jennifer A. Davis, David A. Greve, and Jedidiah R.
McClurg. Development of a translator from llvm to acl2.

Abstract: In our current work a library of formally verified
software components is to be created, and assembled, using the
Low-Level Virtual Machine (LLVM) intermediate form, into sub-
systems whose top-level assurance relies on the assurance of the
individual components. We have thus undertaken a project to

13

14 BIBLIOGRAPHY

build a translator from LLVM to the applicative subset of Com-
mon Lisp accepted by the ACL2 theorem prover. Our translator
produces executable ACL2 formal models, allowing us to both
prove theorems about the translated models as well as validate
those models by testing. The resulting models can be translated
and certified without user intervention, even for code with loops,
thanks to the use of the def::ung macro which allows us to de-
fer the question of termination. Initial measurements of concrete
execution for translated LLVM functions indicate that perfor-
mance is nearly 2.4 million LLVM instructions per second on a
typical laptop computer. In this paper we overview the trans-
lation process and illustrate the translator’s capabilities by way
of a concrete example, including both a functional correctness
theorem as well as a validation test for that example.

[Kama15] Fairouz Kamareddine, Joe Wells, Christoph Zengler, and Henk Barendregt.
Computerising mathematical text, 2015.

Abstract: Mathematical texts can be computerised in many
ways that capture differing amounts of the mathematical mean-
ing. At one end, there is document imaging, which captures
the arrangement of black marks on paper, while at the other
end there are proof assistants (e.g. Mizar, Isabelle, Coq, etc.),
which capture the full mathematical meaning and have proofs
expressed in a formal foundation of mathematics. In between,
there are computer typesetting systems (e.g. Latex and Presen-
tation MathML) and semantically oriented systems (e.g. Content
MathML, OpenMath, OMDoc, etc.). In this paper we advocate
a style of computerisation of mathematical texts which is flex-
ible enough to connect the diferent approaches to computerisa-
tion, which allows various degrees of formalsation, and which
is compatible with different logical frameworks (e.g. set theory,
category theory, type theory, etc.) and proof systems. The basic
idea is to allow a man-machine collaboration which weaves hu-
man input with machine computation at every step in the way.
We propose that the huge step from informal mathematics to
fully formalised mathematics be divided into smaller steps, each
of which is a fully developed method in which human input is
minimal.

[Lamp02] Leslie Lamport. Specifying Systems. Addison-Wesley, 2002.

[Lamp14] Leslie Lamport. How to write a 21st century proof, 2014.

Abstract: A method of writing proofs is described that makes
it harder to prove things that are not true. The method, based
on hierarchical structuring, is simple and practical. The author’s
twenty years of experience writing such proofs is discussed.

BIBLIOGRAPHY 15

[Lamp14a] Leslie Lamport. Talk: How to write a 21st century proof, 2014.

Comment: 2nd Heidelberg Laureate Forum Lecture Tuesday
Sep 23, 2014

[Maso86] Ian A. Mason. The Semantics of Destructive Lisp. Center for the Study
of Language and Information, 1986.

Abstract: Our basic premise is that the ability to construct and
modify programs will not improve without a new and compre-
hensive look at the entire programming process. Past theoretical
research, say, in the logic of programs, has tended to focus on
methods for reasoning about individual programs; little has been
done, it seems to us, to develop a sound understanding of the
process of programming – the process by which programs evolve
in concept and in practice. At present, we lack the means to
describe the techniques of program construction and improve-
ment in ways that properly link verification, documentation and
adaptability.

[OCAM14] unknown. The ocaml website.

[Pier15] Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael Green-
berg, Catalin Hritcu, Vilhelm Sjoberg, and Brent Yorgey. Software foun-
dations, 2015.

Abstract: This electronic book is a course on Software Founda-
tions, the mathematical underpinnings of reliable software. Top-
ics include basic concepts of logic, computer-assisted theorem
proving, the Coq proof assistant, functional programming, op-
erational semantics, Hoare logic, and static type systems. The
exposition is intended for a broad range of readers, from ad-
vanced undergraduates to PhD students and researchers. No spe-
cific background in logic or programming languages is assumed,
though a degree of mathematical maturity will be helpful. The
principal novelty of the course is that it is one hundred per cent
formalized and machine-checked: the entire text is literally a
script for Coq. It is intended to be read alongside an interactive
session with Coq. All the details in the text are fully formalized
in Coq, and the exercises are designed to be worked using Coq.
The files are organized into a sequence of core chapters, cover-
ing about one semester’s worth of material and organized into
a coherent linear narrative, plus a number of appendices cover-
ing additional topics. All the core chapters are suitable for both
upper-level undergraduate and graduate students.

[Ther01] Laurent Théry. A machine-checked implementation of buchberger’s algo-
rithm. Journal of Automated Reasoning, 26:107–137, 2001.

16 BIBLIOGRAPHY

Abstract: We present an implementation of Buchberger’s al-
gorithm that has been proved correct within the proof assistant
Coq. The implementation contains the basic algorithm plus two
standard optimizations.

[Thur94] William P. Thurston. On proof and progress in mathematics. Bulletin
AMS, 30(2), April 1994.

[Wiki14a] ProofWiki. Euclidean algorithm.

[Wiki14b] ProofWiki. Division theorem.

[Zdan14] Steve Zdancewic and Milo M.K. Martin. Vellvm: Verifying the llvm.

Chapter 5

Index

17

	Here is a problem
	Approaches

	Theory
	Software Details
	Installed Software

	Bibliography
	Index

