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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
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Ultimately we would like Axiom to be able to prove that an algorithm generates correct
results. There are many steps between here and that goal, including proving one Axiom
algorithm correct through all of the levels from Spad code, to the Lisp code, to the C code,
to the machine code; a daunting task of its own.

The proof of a single Axiom algorithm is done with an eye toward automating the process.
Automated machine proofs are not possible in general but will certainly exist for known
algorithms. Bressoud said:

Writing is nature’s way of letting you know how sloppy your thinking
is – Guindon[Lamp02]

Mathematics is nature’s way of letting you know how sloppy your
writing is. – Leslie Lamport[Lamp02]

The existence of the computer is giving impetus to the discovery of
algorithms that generate proofs. I can still hear the echos of the col-
lective sigh of relief that greeted the announcement in 1970 that there
is no general algorithm to test for integer solutions to polynomial Dio-
phantine equations; Hilbert’s tenth problem has no solution. Yet,
as I look at my own field, I see that creating algorithms that gener-
ate proofs constitutes some of the most important mathematics being
done. The all-purpose proof machine may be dead, but tightly tar-
geted machines are thriving. – Dave Bressoud [Bres93]

In contrast to humans, computers are good at performing formal pro-
cesses. There are people working hard on the project of actually for-
malizing parts of mathematics by computer, with actual formally cor-
rect formal deductions. I think this is a very big but very worthwhile
project, and I am confident that we will learn a lot from it. The
process will help simplify and clarify mathematics. In not too many
years, I expect that we will have interactive computer programs that
can help people compile significant chunks of formally complete and
correct mathematics (based on a few perhaps shaky but at least ex-
plicit assumptions) and that they will become part of the standard
mathematicians’s working environment. – William P. Thurston [Thur94]

Our basic premise is that the ability to construct and modify programs
will not improve without a new and comprehensive look at the entire
programming process. Past theoretical research, say, in the logic of
programs, has tended to focus on methods for reasoning about indi-
vidual programs; little has been done, it seems to us, to develop a
sound understanding of the process of programming – the process by
which programs evolve in concept and in practice. At present, we lack
the means to describe the techniques of program construction and im-
provement in ways that properly link verification, documentation and
adaptability.
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– Scherlis and Scott (1983) in [Maso86]



Chapter 1

Here is a problem

The goal is to prove that Axiom’s implementation of the Euclidean GCD algorithm is correct.

From category EuclideanDomain (EUCDOM) we find the implementation of the Euclidean
GCD algorithm:

gcd(x,y) == --Euclidean Algorithm

x:=unitCanonical x

y:=unitCanonical y

while not zero? y repeat

(x,y):= (y,x rem y)

y:=unitCanonical y -- this doesn’t affect the

-- correctness of Euclid’s algorithm,

-- but

-- a) may improve performance

-- b) ensures gcd(x,y)=gcd(y,x)

-- if canonicalUnitNormal

x

The unitCanonical function comes from the category IntegralDomain (INTDOM) where we
find:

unitNormal: % -> Record(unit:%,canonical:%,associate:%)

++ unitNormal(x) tries to choose a canonical element

++ from the associate class of x.

++ The attribute canonicalUnitNormal, if asserted, means that

++ the "canonical" element is the same across all associates of x

++ if \spad{unitNormal(x) = [u,c,a]} then

++ \spad{u*c = x}, \spad{a*u = 1}.

unitCanonical: % -> %

++ \spad{unitCanonical(x)} returns \spad{unitNormal(x).canonical}.

implemented as

3



4 CHAPTER 1. HERE IS A PROBLEM

UCA ==> Record(unit:%,canonical:%,associate:%)

if not (% has Field) then

unitNormal(x) == [1$%,x,1$%]$UCA -- the non-canonical definition

unitCanonical(x) == unitNormal(x).canonical -- always true

recip(x) == if zero? x then "failed" else _exquo(1$%,x)

unit?(x) == (recip x case "failed" => false; true)

if % has canonicalUnitNormal then

associates?(x,y) ==

(unitNormal x).canonical = (unitNormal y).canonical

else

associates?(x,y) ==

zero? x => zero? y

zero? y => false

x exquo y case "failed" => false

y exquo x case "failed" => false

true

1.1 Approaches

There are several systems that could be applied to approach the proof.

The plan is to initially look at Coq and ACL2. Coq seems to be applicable at the Spad level.
ACL2 seems to be applicable at the Lisp level. Both levels are necessary for a proper proof.

Coq is very close to Spad in spirit so we can use it for the high-level proofs.

ACL2 is a Lisp-level proof technology which can be used to prove the Spad-to-Lisp level.

There is an LLVM to ACL2 translator which can be used to move from the GCL Lisp level
to the hardware since GCL compiles to C. In particular, the ”Vellvm: Verifying the LLVM”
[Zdan14] project is important.

Quoting from Hardin [Hard14]

LLVM is a register-based intermediate in Static Single Assignment (SSA) form.
As such, LLVM supports any number of registers, each of which is only assigned
once, statically (dynamically, of course, a given register can be assigned any
number of times). Appel has observed that “SSA form is a kind of functional
programming”; this observation, in turn, inspired us to build a translator from
LLVM to the applicative subset of Common Lisp accepted by the ACL2 theo-
rem prover. Our translator produces an executable ACL2 specification that is
able to efficiently support validation via testing, as the generated ACL2 code
features tail recursion, as well as in-place updates via ACL2’s single-threaded
object (stobj) mechanism. In order to ease the process of proving properties
about these translated functions, we have also developed a technique for reason-
ing about tail-recursive ACL2 functions that execute in-place, utilizing a formally
proven “bridge” to primitive-recursive versions of those functions operating on
lists.
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Hardin [Hard13] describes the toolchain thus:

Our translation toolchain architecture is shown in Figure 1. The left side of tthe
figure depicts a typical compiler frontend producing LLVM intermediate code.
LLVM output can be produced either as a binary “bitcode” (.bc) file, or as text
(.ll file). We chose to parse the text form, producing an abstract syntax tree
(AST) representation of the LLVM program. Our translator then converts the
AST to ACL2 source. The ACL2 source file can then be admitted into an ACL2
session, along with conjectures that one wishes to prove about the code, which
ACL2 processes mostly automatically. In addition to proving theorems about
the translated LLVM code, ACL2 can also be used to execute test vectors at
reasonable speed.

Note that you can see the intermediate form from clang with

clang -O4 -S -emit-llvm foo.c

Both Coq and the Hardin translator use OCAML [OCAM14] so we will have to learn that
language.
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Chapter 2

Theory

The proof of the Euclidean algorithm has been known since Euclid. We need to study an
existing proof and use it to guide our use of Coq along the same lines, if possible. Some of
the “obvious” natural language statements may require Coq lemmas.

From WikiProof [Wiki14a] we quote:

Let
a, b ∈ Z

and a ̸= 0orb ̸= 0.

The steps of the algorithm are:

1. Start with (a, b) such that |a| ≥ |b|. If b = 0 then the task is complete and the GCD is
a.

2. if b ̸= 0 then you take the remainder r of a/b.

3. set a← b, b← r (and thus |a| ≥ |b| again).

4. repeat these steps until b = 0

Thus the GCD of a and b is the value of the variable a at the end of the algorithm.

The proof is:

Suppose
a, b ∈ Z

and aorb ̸= 0.

From the division theorem, a = qb+ r where 0 ≤ r ≤ |b|
From GCD with Remainder, the GCD of a and b is also the GCD of b and r.

Therefore we may search instead for the gcd(b, r).

7
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Since |r| ≥ |b| and
b ∈ Z

, we will reach r = 0 after finitely many steps.

At this point, gcd(r, 0) = r from GCD with Zero.

We quote the Division Theorem proof [Wiki14b]:

For every pair of integers a, b where b ̸= 0, there exist unique integers q, r such that a = qb+r
and 0 ≤ r ≤ |b|.



Chapter 3

Software Details

3.1 Installed Software

Install CLANG, LLVM

http://llvm.org/releases/download.html

Install OCAML

sudo apt-get install ocaml

An OCAML version of gcd would be written

let rec gcd a b = if b = 0 then a else gcd b (a mod b)

val gcd : int -> int -> int = <fun>

Leslie Lamport[Lamp14] on 21st Century Proofs.

A method of writing proofs is described that makes it harder to prove things that are not
true. The method, based on hierarchical structuring, is simple and practical. The author’s
twenty years of experience writing such proofs is discussed.

Lamport points out that proofs need rigor and precision. Structure and Naming are impor-
tant. Every step of the proof names the facts it uses.

Temporal Logic of Actions (TLA)

Sloppiness is easier than precision and rigor – Leslie Lamport[Lamp14a]

Computerising Mathematical Text[Kama15] explores various ways of capturing mathemati-
cal reasoning.

Chlipala[Chli15] gives a pragmatic approach to COQ.

9
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Medina-Bulo et al.[Bulo04] gives a formal verification of Buchberger’s algorithm using ACL2
and Common Lisp.

Théry[Ther01] used COQ to check an implementation of Buchberger’s algorithm.

Pierce[Pier15] has a Software Foundations course in COQ with downloaded files in Pier15.tgz.
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Bibliography
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